

Hieff[®] Taq DNA Polymerase

Product Information

Product Name	Cat#	Size
	10101ES80	1,000 U
Hiell ^o Taq DNA Polymerase	10101ES92	10,000 U

Product Description

Hieff[®] Taq DNA polymerase is a thermostable recombinant DNA polymerase expressed by *Thermus aquaticus* with a molecular weight of 94 KDa. It has $5'\rightarrow 3'$ polymerase activity and $5'\rightarrow 3'$ exonuclease activity but without $3'\rightarrow 5'$ exonuclease activity. The amplified product has 3'- dA and can be directly used for TA cloning.

Product Components

Component Number	Name –	Cat#/Size	
		10101ES80(1,000 U)	10101ES92(10,000 U)
10101-A	10×Taq Buffer (Mg ²⁺ Free)	4×1 mL	4×10 mL
10101-В	25 mM MgCl ₂	2×1 mL	2×10 mL
10101-C	Hieff [®] Taq DNA Polymerase (5 U/µL)	200 µL	2×1 mL

Application

Genotyping, colony PCR and other conventional PCR.

Unit Definition

Using the activated DNA of salmon sperm as template/primer, the activity is defined as one active unit (U) when 10 nmol of total nucleotide was ingested as acid insoluble substance at 74°C for 30 min.

Shipping and Storage

The products are shipped with ice pack and can be stored at 20°C for 2 years.

Product Notes

1 For your safety and health, please wear lab coats and disposable gloves for operation.

2 For research use only!

Reaction composition(Preparation on ice)

Components	Volume(µL)	Final Concentration
ddH ₂ O	to 50	-
10×Taq Buffer (Mg ²⁺ Free)	5	1×
25 mM MgCl ₂	3	1.5 mM
dNTP Mix (10 mM each)	1 µL	0.2 mM
DNA template	XμL	-
Forward primer (10 µM)	2 µL	0.4 μΜ
Reverse primer (10 µM)	2 µL	0.4 μΜ
Hieff [®] Taq DNA Polymerase (5 U/µL)	0.4 µL	0.04 U/µL

Notes:

1) Final concentration of Mg^{2+} : The optimal concentration of Mg^{2+} is 1.5-2 mM. If necessary, the optimal concentration of Mg^{2+} can be explored upward at intervals of 0.2-0.5 mM.

2) Polymerase addition: The polymerase has a certain degree of 5'- 3' polymerase activity at room temperature. In order to prevent non-specific amplification, it

is suggested to add the polymerase to the reaction system in the last step.

3) Concentration of polymerase: $0.04 \text{ U/}\mu\text{L}$ is recommended. It can be optimized between 0.025- $0.04 \text{ U/}\mu\text{L}$.

4) Recommended use of different templates (50 µL reaction system)

Type of template	Template usage
Genomic DNA	50 ng-100 ng
Plasmid DNA	10 pg-20 ng
cDNA	1-5 μ L (No more than 1/10 of the reaction system)

Thermal cycling protocol

Stage	Temperature (°C)	Time	Cycles
Pre-denaturation	94	30 sec-5 min	1
Denaturation	94	30 sec	
Annealing	50-60	30 sec	35
Extension	72	60 sec/kb	
Final Extension	72	10 min	1

Notes:

1) Pre-denaturation temperature and time: 94°C is recommended. The recommended pre denaturation time: 30 sec for plasmid DNA and other simple templates; 3 min for complex templates such as cDNA and genomic DNA; 5-10 min for the template with high GC.

2) Annealing temperature and time: 60°C is recommended. Temperature gradient can be set up to find the optimum temperature for primer annealing. The recommended annealing time is set to 20 sec and can be adjusted within 10-30 sec. Too long annealing time may cause the amplified products diffusion on the agarose gel.

3) Amplification products: Please store the PCR amplification products at - 20°C to prevent DNA degradation.